ero
La integral de cero es igual a la constante
.
![]()
Integral de una potencia
La integral de una potencia es igual a la variable elevada a la potencia
sobre
sumando una constante.


Ejemplos de integrales
1![]()
![]()
2![]()

3![]()

4![]()
![Rendered by QuickLaTeX.com \displaystyle { \int x^{\frac{2}{3}} dx = \frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1} + C = \frac{x^{\frac{5}{3}}}{\frac{5}{3}} + C = \frac{3 \sqrt[3]{x^5}}{5} + C = \frac{3 \sqrt[3]{x^3\cdot x^2}}{5} + C = \frac{3 x\cdot \sqrt[3]{x^2}}{5} + C}](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-9718f864cb38191d909b043590f0332c_l3.png)
5![]()

6![]()
![Rendered by QuickLaTeX.com \displaystyle { \int \sqrt[3]{x} dx = \int x^{\frac{1}{3}} dx = \frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1} + C = \frac{x^{\frac{4}{3}}}{{\frac{4}{3}}} + C = \frac{3}{4}x^{\frac{4}{3}} + C =\frac{3}{4}x\sqrt[3]{x} + C }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-747db4f9c055eb27b572ede46d0c644e_l3.png)
7![Rendered by QuickLaTeX.com \displaystyle { \int \frac{1}{\sqrt[4]{x}} dx }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-750cd87a8d6dfc27ba0beeb953e67a52_l3.png)
![Rendered by QuickLaTeX.com \displaystyle { \int \frac{1}{\sqrt[4]{x}} dx = \int x^{\frac{-1}{4}} dx = \frac{x^{\frac{-1}{4}+1}}{\frac{-1}{4}+1} + C = \frac{x^{\frac{3}{4}}}{\frac{3}{4}}} + C = \frac{4}{3}x^{\frac{3}{4}} + C =\frac{4}{3}\sqrt[4]{x^3} + C}](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-ba101ca3cbd6bb08030c1f9791235388_l3.png)
8![Rendered by QuickLaTeX.com \displaystyle { \int \frac{1}{\sqrt[3]{x^2}} dx }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-50fb3ceb8ee6eda92a99af4560c85e93_l3.png)
![Rendered by QuickLaTeX.com \displaystyle { \int \frac{1}{\sqrt[3]{x^2}} dx = \int x^{\frac{-2}{3}} dx = \frac{x^{\frac{-2}{3}+1}}{\frac{-2}{3}+1}}+ C = \frac{x^{\frac{1}{3}}}{\frac{1}{3}} + C = 3\sqrt[3]{x} + C }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-2f11fa40b94ab96a2e11e6603870d8db_l3.png)
9![Rendered by QuickLaTeX.com \displaystyle { \int \frac{1}{x^2 \sqrt[5]{x^2}} dx }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-68a4068ebe5122c48145fab8e47cf9b4_l3.png)
![Rendered by QuickLaTeX.com \displaystyle { \int \frac{1}{x^2 \sqrt[5]{x^2}} dx = \int x^{-2} x^{\frac{-2}{5}} dx = \int x^{\frac{-12}{5}} dx = \frac{x^{\frac{-7}{5}}}{\frac{-7}{5}} + C = -\frac{5}{7 \sqrt[5]{x^7}} +C }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-5adb6552e36cf5d98d1ad3dc044e24fb_l3.png)
10![]()

11![]()

12![Rendered by QuickLaTeX.com \displaystyle { \int (\frac{x^2 + \sqrt[3]{x^2}}{\sqrt{x}}) dx }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-49388eb4fd87c02d5ae5d99ed037df2c_l3.png)
![Rendered by QuickLaTeX.com \displaystyle { \int (\frac{x^2 + \sqrt[3]{x^2}}{\sqrt{x}}) dx = \int (\frac{x^2}{\sqrt{x}} + \frac{\sqrt[3]{x^2}}{\sqrt{x}}) dx = \int (x^{\frac{3}{2}} + x^{\frac{1}{6}}) dx = }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-a2fe3d5738932d5bac19355853c2b45f_l3.png)
![Rendered by QuickLaTeX.com \displaystyle { = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + \frac{x^{\frac{7}{6}}}{\frac{7}{6}} + C = \frac{2\sqrt{x^5}}{5} + \frac{6\sqrt[6]{x^7}}{7} +C = \frac{2x^2\sqrt{x}}{5} + \frac{6x\sqrt[6]{x}}{7} + C }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-902980ca8f213ab2b9d379066ead4976_l3.png)
13

![]()
14![Rendered by QuickLaTeX.com \displaystyle { \int (\frac{3\sqrt{x}- 5\sqrt[3]{x^2}}{2\sqrt[4]{x}}) dx }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-1b5e8054d7842e276e0117648f7b03dc_l3.png)
![Rendered by QuickLaTeX.com \displaystyle { \int (\frac{3\sqrt{x}- 5\sqrt[3]{x^2}}{2\sqrt[4]{x}}) dx = \int (\frac{3\sqrt{x}}{2\sqrt[4]{x}} - \frac{5\sqrt[3]{x^2}}{2\sqrt[4]{x}}) dx = \int (\frac{3}{2}x^{\frac{1}{4}} - \frac{5}{2}x^{\frac{5}{12}}) dx = }](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-cc9571fed4ca33d2c1aab491db2d3101_l3.png)
![Rendered by QuickLaTeX.com \displaystyle { = \frac{3}{2}\frac{x^{\frac{5}{4}}}{\frac{5}{4}} - \frac{5}{2}\frac{x^{\frac{17}{12}}}{\frac{17}{12}} + C = \frac{6}{5}\sqrt[4]{x^5} - \frac{30}{17}\sqrt[12]{x^{17}} + C}](https://www.superprof.es/apuntes/wp-content/ql-cache/quicklatex.com-a706d701810d4fc5a169e3f4106069bf_l3.png)
15![]()
![]()
16![]()
![]()
17![]()
![]()
18![]()

19![]()

20![]()

https://www.superprof.es/apuntes/escolar/matematicas/calculo/integrales/integrales-inmediatas.html#tema_integral-de-una-constante
No hay comentarios:
Publicar un comentario